3 research outputs found

    Mapping Real Time Applications on NoC Architecture with Hybrid Multi-objective Algorithm

    Get PDF
    International audienceThe work presented in this paper is a contribution to solving a widespread problem in the field of system design, embedded the placement of a large application on an architecture (NOC). Application is represented by a set of tasks that communicate with each other by sending message via bus on a heterogeneous architecture. Our role is to place the tiles (task) on different elements (core) of architecture with the objectives of minimizing time execution and the energy consumption under the constraints of load balancing, bandwidth, available memory and size of the queue waiting processors. To solve this problem, we used in the context of our present work, a new meta-heuristic algorithm Particle Swarm. it has proved its effectiveness in many fields such as optimization of networks, image processing and even control of industrial systems but it was never applied in our domain

    Novel Metric for Load Balance and Congestion Reducing in Network on-Chip

    Get PDF
    The Network-on-Chip (NoC) is an alternative pattern that is considered as an emerging technology for distributed embedded systems. The traditional use of multi-cores in computing increase the calculation performance; but affect the network communication causing congestion on nodes which therefore decrease the global performance of the NoC. To alleviate this problematic phenomenon, several strategies were implemented, to reduce or prevent the occurrence of congestion, such as network status metrics, new routing algorithm, packets injection control, and switching strategies. In this paper, we carried out a study on congestion in a 2D mesh network, through various detailed simulations. Our focus was on the most used congestion metrics in NoC. According to our experiments and performed simulations under different traffic scenarios, we found that these metrics are less representative, less significant and yet they do not give a true overview of reading within the NoC nodes at a given cycle. Our study shows that the use of other complementary information regarding the state of nodes and network traffic flow in the design of a novel metric, can really improve the results. In this paper, we put forward a novel metric that takes into account the overall operating state of a router in the design of adaptive XY routing algorithm, aiming to improve routing decisions and network performance. We compare the throughput, latency, resource utilization, and congestion occurrence of proposed metric to three published metrics on two specific traffic patterns in a varied packets injection rate. Our results indicate that our novel metric-based adaptive XY routing has overcome congestion and significantly improve resource utilization through load balancing; achieving an average improvement rate up to 40 % compared to adaptive XY routing based on the previous congestion metrics

    VIRTUAL CHANNEL AWARE SCHEDULING FOR REAL TIME DATA-FLOWS ON NETWORK ON-CHIP

    No full text
    International audienceThe increasing complexity of real-time applications presents a challenge to researchers and software designers. The tasks of these applications usually exchange many data-flows and often need to satisfy real-time constraints. Although the Network on-Chip (NoC) paradigm offers an underlying communication infrastructure that gives more hardware resources, tasks and data-flows cannot be performed before their deadlines. In recent works, preemptive wormhole switching with fixed priority has been introduced to meet real-time constraints of real-time applications. However, it suffers some bottleneck such as hardware requirement where none of these works takes account of the number of implemented Virtual Channels on the router. To alleviate this problem, we propose a novel scheduler for soft real-time data-flows application that takes into account the lack on resource in routers in term of Virtual Channels. Experimental results obtained on a benchmark of synthetic and soft real applications have shown the efficiency of our approach in term of real-time constraints satisfaction for data-flow traffics and hardware requirements
    corecore